Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles
نویسندگان
چکیده
Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines photothermal ablation with immunotherapy. The design is based on chitosan-coated hollow CuS nanoparticles that assemble the immunoadjuvants oligodeoxynucleotides containing the cytosine-guanine (CpG) motifs. Interestingly, these structures break down after laser excitation, reassemble, and transform into polymer complexes that improve tumor retention of the immunotherapy. In this "photothermal immunotherapy" approach, photothermal ablation-induced tumor cell death reduces tumor growth and releases tumor antigens into the surrounding milieu, while the immunoadjuvants potentiate host antitumor immunity. Our results indicated that combined photothermal immunotherapy is more effective than either immunotherapy or photothermal therapy alone against primary treated and distant untreated tumors in a mouse breast cancer model. These hollow CuS nanoparticles are biodegradable and can be eliminated from the body after laser excitation.
منابع مشابه
Lipopolysaccharide-coated CuS nanoparticles promoted anti-cancer and anti-metastatic effect by immuno-photothermal therapy
To meet the ultimate goal of cancer therapy, which is treating not only the primary tumor but also preventing metastatic cancer, the concept of combining immunotherapy with photothermal therapy (PTT) is gaining great interest. Here, we studied the new material, lipopolysaccharide (LPS) coated copper sulfide nanoparticles (LPS-CuS), for the immuno-photothermal therapy. We evaluated the effect of...
متن کاملFucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer
In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has...
متن کاملManganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy
The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loadi...
متن کاملInfrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma
Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in v...
متن کاملAn investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice
Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...
متن کامل